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1 Introduction

The gauge/gravity duality has proven to be a powerful tool to study strongly coupled field

theories [1]. There are many strongly coupled condensed matter systems that are of both

theoretical and experimental interest. Thus it is reasonable to ask how much can we learn

about such field theories using the AdS/CFT correspondence. There has been a lot of

effort in this direction as summarized recently in [2, 3].

There are non-relativistic condensed matter systems, like fermions at unitarity, which

exhibit the non-relativistic analog of the conformal symmetry - the Schrödinger symmetry.

The Schrödinger algebra is generated by spatial translations P i, temporal translation H,

spatial rotations M ij, Galilean boost Ki, the dilatation operator D, a special conformal

transformation C and Galilean mass M . In a non-relativistic scale invariant theory, time

and space scale differently, t → λnt and ~x → λ~x, respectively. The real parameter n is

called the dynamical exponent and the Schrödinger invariant systems have n = 2. When

n 6= 2, one does not have the special conformal generator in the algebra and the theory is

only scale invariant. The familiar case of scale invariance in a relativistic conformal theory

corresponds to n = 1. More details on non-relativistic conformal theories can be found

in [4–6].

In [7, 8], a five-dimensional gravitational background with Schrödinger symmetry was

found as a solution to the Einstein-Hilbert action coupled to a massive vector field. Sub-
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sequently in [9–11] this solution was embedded in the type IIB supergravity.1 The ten-

dimensional background was obtained by applying a solution generating technique, known

as the null Melvin twist, to the AdS5 × S5 background. The null Melvin twist, described

in [24, 25], can be used to generate new supergravity solutions starting from a known

solution, when the latter has at least one compact and one noncompact isometry. This

technique has been extensively used in, e.g., [16, 22] to generate new non-relativistic gravity

backgrounds.

There are also supersymmetric extensions of the Schrödinger algebra, which have been

studied in [26–31]. Therefore it is natural to look for Schrödinger invariant supergravity so-

lutions which possess some supersymmetry. The Schrödinger invariant solutions discussed

in [9–11] completely break supersymmetry even though they are obtained from supersym-

metric IIB backgrounds. A supersymmetric Schrödinger invariant solution was constructed

in [15], however, this solution is unstable, has vanishing B-field and is sourced only by the

usual self-dual RR flux. Other examples of supersymmetric non-relativistic solutions were

found in [15, 19, 21, 23], however, all those solutions have dynamical exponent n 6= 2 and

therefore are scale invariant but not invariant under the full Schrödinger group.

In this paper we will analyze in detail the supersymmetries preserved by non-relativistic

Schrödinger invariant solutions of the type IIB supergravity with non-vanishing B-field.

We consider non-relativistic backgrounds generated by the null Melvin twist applied to

the Freund-Rubin type solutions of the form AdS5 × X5, where X5 is a Sasaki-Einstein

manifold. When the Killing spinor of the Sasaki-Einstein manifold is invariant under the

U(1) isometry used in the twist, the non-relativistic solution preserves, in general, two real

supercharges. These two supercharges are a subset of the Poincaré supersymmetries of the

relativistic superconformal algebra. The superconformal symmetries are completely broken

by the twist.

We illustrate our general result with two familiar examples: S5 and T 1,1. In the first

case, we find that the non-relativistic solution can have four real supersymmetries. This

is due to the 32 unbroken supersymmetries in the original solution on S5 before the twist.

The second case illustrates better the generic situation where only 8 supersymmetry are

present before the twist. Other examples that are covered by our analysis are generaliza-

tions of the T 1,1 example and include two infinite families of Sasaki-Einstein manifolds,

Y p,q [32] and Lp,q,r [33]. All those spaces can be used as internal manifolds for supersym-

metric Schrödinger invariant IIB solutions. Since both of these infinite families have U(1)

isometries that leave the Killing spinor invariant, we find an infinite number of Schrödinger

invariant solutions which preserve two supercharges.

The general form of the backgrounds constructed by the null Melvin twist also suggests

a natural Ansatz for non-relativistic type IIB solutions with higher dynamical exponents

and non-zero B-field. We show that there is a large class of such solutions of the form

ds210 = − Ω

z2n
du2 +

1

z2
(−2 dudv + dx2

1 + dx2
2 + dz2) + ds2X5

,

F(5) = (1 + ⋆) volX5
, B(2) =

1

zn
A ∧ du ,

1See [12]–[23] for examples of other non-relativistic gravity solutions.
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where X5 is an Einstein manifold and A is an one-form on X5. We find that A must be a

vector eigenfunction of the Laplacian on X5 and the dynamical exponent, n, is determined

by the corresponding eigenvalue. The metric function Ω obeys an inhomogeneous scalar

Laplace equation on X5. In principle, both A and Ω can be determined explicitly using

harmonic expansions.

The class of solutions constructed here includes all solutions generated by the null

Melvin twist and also the solutions with general dynamical exponents and vanishing B-

field found in [15]. It is worth emphasizing that in the more general case of solutions with a

nontrivial B-field, the dynamical exponent is related to the eigenvalues of vector harmonics

on Einstein manifolds.

The paper is organized as follows: In section 2, we present the non-relativistic

Schrödinger invariant supergravity backgrounds obtained by the null Melvin twist and

recast them in a form that is convenient for analysis of unbroken supersymmetries carried

out in detail in section 3. Then, in section 4, we work out some explicit examples that illus-

trate the general discussion in section 3. In section 5, we introduce an Ansatz for type IIB

solutions with general dynamical exponents and show that it reduces to a coupled system

of a vector and a scalar Laplace equations on the internal manifold. We also work out in

detail some examples on S5 using standard methods of harmonic expansion. We conclude

in section 6 with comments and directions for further study. A brief discussion of the null

Melvin twist and a summary of some pertinent solutions are given in the appendix.

2 The solution

Consider a Freund-Rubin type solution of IIB supergravity of the form AdS5 × X5 with

the metric and the five-form flux given by

ds210 = ds2AdS5
+ ds2X5

, (2.1)

F(5) = (1 + ⋆)volAdS5
, (2.2)

whereX5 is an Einstein manifold. In addition we assume thatX5 has at least U(1) isometry,

with the corresponding Killing vector K.

In the following we will use the metric on AdS5 written in terms of

light-cone coordinates,

ds2AdS5
=

1

z2
(−2 dudv + dx2

1 + dx2
2 + dz2) , (2.3)

with the radius of AdS5 normalized to one.

The null Melvin twist [24, 25] along a Killing vector K on X5 yields another type IIB

solution of the form Sch5×X5, where Sch5 is a five-dimensional space-time invariant under

the Schrödinger symmetry.2 The metric,

ds210 = ds2Sch5
+ ds2X5

, (2.4)

2See the appendix for more details of this construction.
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the five-form flux

F(5) = (1 + ⋆)volSch5
, (2.5)

and, in addition, a nonzero three-form flux, H(3) = dB(2), in the solution can be written

explicitly in terms of the data of the initial solution (2.1), (2.2) and K. Specifically, the

metric along Sch5 in the same light-cone coordinates as above is

ds2Sch5
= − Ω

z4
du2 +

1

z2
(−2 dudv + dx2

1 + dx2
2 + dz2) , (2.6)

and

Ω = ||K||2 , (2.7)

is a nonnegative function given by the length square of the Killing vector, K, with respect

to the metric on X5. Similarly, the two-form potential is given by

B(2) =
1

z2
K ∧ du , (2.8)

where K is the one-form dual to K.3 To make sense of these solutions as holographic duals

to non-relativistic field theories the light-cone coordinate v should be periodically identified

v ∼ v + 2πrv [7, 8, 11]. The momentum along this compact direction is quantized in units

of the inverse radius r−1
v . This momentum is interpreted as the Galilean mass (or the

particle number) in the dual field theory.

By construction, (2.4), (2.5) and (2.8) satisfy the equations of motion4 of IIB super-

gravity for any Killing vector K, since all one is using is a series of boosts, T-dualities

and shifts which are all symmetries of IIB supergravity. One can also view the Sch5 ×X5

solution as a deformation of the AdS5×X5 solution above, which can be formally recovered

by setting K = 0 in (2.4), (2.5) and (2.8).

It is possible that the norm of the Killing vector K vanishes on some locus in X5. The

curvature of the solution is completely regular on this locus, in fact, the solution looks like

AdS5×X5. It is somewhat strange that the asymptotic structure of the non-compact space

changes from the non-relativistic Sch5 to AdS5 at special points on X5. However this kind

of space-times have been analyzed in the literature, see [25, 34] and references therein. One

can argue that, despite the presence of the locus on which Ω vanishes, the ten-dimensional

background is non-distinguishing and thus has the proper asymptotic and causal structure

for a dual of a non-relativistic field theory. An intuitive way to understand this is to observe

that in the solution (2.4) every point with u > u0 can be reached by a causal curve on the

ten-dimensional background starting at u0. This implies that the light-cone is degenerate

and the space-time is non-distinguishing. This is precisely a property one should expect

from a gravity dual to a non-relativistic field theory. The presence of the locus on which

Ω vanishes does not change the fact that the space-time is non-distinguishing as long as Ω

is non-zero on an open set in X5. This will always be the case for our solutions.5

3In terms of explicit coordinates ξα on X5, we have ds2
X5

= gαβdξαdξβ , Ω = gαβK
α
K

β, and Kα = gαβK
β .

4We have also checked this explicitly, see the appendix for more details.
5We are grateful to Veronika Hubeny and Mukund Rangamani for helpful explanations on this point.
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3 General supersymmetry analysis

Let us now assume that the AdS5 ×X5 solution preserves some of the supersymmetries of

IIB supergravity, that is there exists a chiral Killing spinor ǫ0 in ten dimensions,

Γ1 . . .Γ10ǫ0 = ǫ0 , (3.1)

for which the dilatino and the gravitino supersymmetry variations vanish. In the following

we will find sufficient conditions under which the Killing spinor, ǫ0, can be deformed to a

Killing spinor, ǫ, of the Sch5 ×X5 solution.

To this end let us introduce the frames, eM , for the metric (2.4),

e1 =
1

2z2
(Ω + 1) du+ dv , e4 =

1

2z2
(Ω − 1) du+ dv ,

e2 =
1

z
dx1 , e3 =

1

z
dx2 , e5 =

1

z
dz , (3.2)

e5+α = eα(5) , α = 1, . . . , 5 .

where eα(5) are some orthonormal frames on X5 that will be specified later. The equations

for unbroken supersymmetry are [35]

δλ = − 1

24
HMNP ΓMNP ǫ∗ = 0 , (3.3)

and

δψM = ∇Mǫ+
i

480
FNPQRSΓNPQRSΓM ǫ− 1

48

[
ΓM ,HPQRΓPQR

]
ǫ∗ , (3.4)

where the flat indices M,N, . . . range from 1 to 10. We use the same conventions as in [36]

with the mostly plus metric and real Dirac Γ-matrices in ten dimensions.

The corresponding frames, eM0 , and the supersymmetry equations, δ0λ = 0 and δ0ψM =

0 for the AdS5 ×X5 solution are obtained by setting K = 0 in (3.2), (3.3) and (3.4). In

that case the H(3) flux vanishes and the dilatino variation vanishes identically.

We start our analysis of unbroken supersymmetries with the dilatino variation (3.3) in

which the H(3) flux is given by

H(3) = dB(2) =
(
dK + 2K ∧ e5

)
∧ (e1 − e4) . (3.5)

Since K is a one form on X5, it follows that (3.3) factorizes into

δλ = − 1

24
HMNP ΓMNP ǫ∗ = M(Γ1 − Γ4)ǫ∗ = 0 , (3.6)

where M is a real matrix

M = − 1

8
(dK)MNΓMN +

1

2
KMΓ5M . (3.7)

Note that the summation above is over the range M,N = 6, . . . , 10 since both K and dK
have nonvanishing components only along X5. Hence we can solve (3.6) by imposing a

single projection condition

(Γ1 − Γ4)ǫ∗ = (Γ1 − Γ4)ǫ = 0 , (3.8)

– 5 –
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where the condition for ǫ follows using reality of the Γ-matrices.

The gravitino variations (3.4) involve two types of terms that depend on K and thus

are absent in the corresponding equations for the Kiling spinor ǫ0 on AdS5 ×X5. If those

terms can be eliminated from the equations, the problem of finding the Killing spinor ǫ on

Sch5 ×X5 will be reduced to that of finding ǫ0 on AdS5 ×X5.

The additional terms of the first type arise from the deformation of the spin connection

due to the function Ω in e1 and e4. We can write this deformation succinctly as the

difference of the spin connections for the two metrics,

W −W
∣∣
Ω=0

=
4Ω

z5
du⊗ du ∧ dz − 1

z4
du⊗ du ∧ dΩ , (3.9)

where

W = ωMN ⊗ eM ∧ eN , (3.10)

and ωMN is the spin connection. It is clear that the deformation due to those additional

terms will arise only in the δψu variation.6

The deformation terms involving the H(3) flux manifestly vanish due to (3.8) for all

δψM , but δψ1 and δψ4. Indeed, for M 6= 1, 4, the (Γ1 − Γ4) factor arising from the

contraction as in (3.6) commutes, or anticommutes, with all other matrices in this term.

Hence it can be moved to act directly on ǫ∗, so that these variations vanish due to (3.8).

To evaluate the remaining two variations, consider the combination e1δψ1 + e4δψ4.

This yields a sum of two terms

1

96

(
Ω

z2
du+ 2 dv

) [
Γ1 − Γ4,HMNP ΓMNP

]
ǫ∗+

1

96z2
du
[
Γ1 + Γ4,HMNP ΓMNP

]
ǫ∗ . (3.11)

The first commutator vanishes identically, while the second one gives a nontrivial contri-

bution to δψu, which we evaluate explicitly below.

To summarize, we have shown that, apart from the dilatino variation, the only equation

that is modified by the deformation is the gravitino variation δψu. Before we proceed with

this variation, let us note that the other gravitino variations along Sch5 are solved by a

single additional projector, (
Γ2 + iΓ3

)
ǫ = 0 . (3.12)

Indeed, upon using (3.1) to simplify the F(5) flux terms, and then imposing the projec-

tion (3.8), all variations δψx1
, δψx2

, δψv and δψz reduce to (3.12) multiplied by some other

Γ-matrix.

Note that in the case of the AdS5 ×X5 solution, the gravitino variations along AdS5

are solved by a single projector

(
1 − iΓ1234

)
ǫ0 = 0 . (3.13)

The solutions to this equation include both solutions to (3.8) and (3.12) and to the equations

where both projectors are replaced by the ones with the opposite sign.

6We use a shorthand notation for the curved indices labelling them with the corresponding coordinate.
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Finally, consider the variation δψu. Here we find

δψu − δ0ψu = − 1

4z2

(
3Ω Γ5 − Γα∂αΩ

)
(Γ1 − Γ4) ǫ

+
i

4z2
Ω Γ2Γ3Γ5(Γ1 − Γ4) ǫ (3.14)

− 1

z2
M ǫ∗ .

The terms in the first line are due to (3.9), and we have introduced a shorthand notation

Γα = eαMΓM . The second line arises from additional terms in the F(5) flux in the coordinate

basis due to the Ω-terms in e1 and e4. The last line is due to the non-vanishing term in (3.11)

with the matrix M given in (3.7). Clearly the first two lines vanish if we impose (3.8), which

leaves a single additional algebraic constraint on the Killing spinor,

M ǫ∗ = 0 . (3.15)

In the following we will unravel the conditions under which this equation has

nontrivial solutions.

The transformation of a Killing spinor, ǫ, under an isometry K is given by the

Lie derivative

LK ǫ = KM∂M ǫ+
1

4

(
KMωMPQ + ∇[PKQ]

)
ΓPQǫ

= KM∇M ǫ+
1

8
(dK)MNΓMNǫ . (3.16)

Next consider the gravitino variation along K,

KMδψM = KM∇M ǫ+
i

480
FNPQRSΓNPQRS(KMΓM ) ǫ . (3.17)

The second term can be expanded using the explicit form of the F(5) flux in (2.5). We get,

using (3.1) and (3.13),

i

480
FNPQRSΓNPQRS(KMΓM ) ǫ =

1

2
KMΓ5M ǫ .

Substituting this back in (3.17) and using (3.16) and (3.7), we obtain

KM δψM = LK ǫ−
1

8
(dK)MNΓMNǫ+

1

2
KMΓ5M ǫ

= LK ǫ+ M ǫ . (3.18)

This shows that a Killing spinor, ǫ, is annihilated by M if and only if it is invariant under

the corresponding isometry. Since M is real, this also implies that M ǫ∗ = 0.

The result of our analysis is an explicit method for obtaining Killing spinors for the

Schrödinger background, Sch5 × X5 obtained by the null Melvin twist, starting with the

Killing spinors of the undeformed AdS5 ×X5 background:

– 7 –
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• A Killing spinor, ǫ, on AdS5 ×X5 is also a Killing spinor on Sch5 ×X5, where the

Sch5 × X5 solution is obtained by the null Melvin twist along the Killing vector K,

provided ǫ satisfies

1

2

(
1 + Γ14

)
ǫ =

1

2

(
1 + iΓ23

)
ǫ = 0 and LK ǫ = 0 .

• Conversely, any Killing spinor on Sch5 ×X5 satisfying the projections7 above gives

rise to a K-invariant Killing spinor on AdS5 ×X5.

In fact, it appears that the above construction gives rise to all Killing spinors on Sch5×
X5. The complete analysis is more involved. If we start with an ǫ that does not satisfy (3.8),

we must solve the dilatino variation by setting M ǫ∗ = 0 from the start. Furthermore, in all

gravitino variations, the H(3) flux terms will not cancel. A systematic method to exclude

this type of Killing spinors would be to analyze the integrability conditions for the gravitino

variations. We have not carried out this calculation in the general case, but rather verified

explicitly in the simplest examples of X5 = S5 and X5 = T 1,1 that there are no further

Killing spinors of opposite Γ14 chirality. This is in agreement with [15, 19], where it was

shown that non-relativistic supersymmetric solutions with vanishing H(3) flux and different

dynamical exponents break all superconformal Killing supersymmetries.

The undeformed AdS5×X5 solution has 4⊗2 = 8 real supercharges where the factor of

4 in the direct product comes from the AdS5 Killing spinors and 2 is the number of Killing

spinors on a generic Sasaki-Einstein manifold. As discussed above, the null Melvin twist

breaks all AdS5 supersymmetries and we are left with non-relativistic solutions preserving

2 supercharges. For the case of AdS5 × S5 we have 4 ⊗ 8 = 32 supersymmetries because

S5 has 8 Killings spinors and as we discuss in the next section one can find cases in which

the number of supersymmetries of the twisted solution is enhanced to 4.

4 Examples

In this section we illustrate how the general construction in the previous section works for

some well known five-dimensional Sasaki-Einstein manifolds.

4.1 S5

The most symmetric example of a five-dimensional Sasaki-Einstein manifold is the sphere

S5. It has SO(6) isometry group and we can apply the general, three-parameter null Melvin

twist on a U(1)3 subgroup. One can find the conditions for unbroken supersymmetry and

construct Killing spinors of the twisted solution explicitly, however, it is more efficient to

use group theory to extract this information.

The SO(6) isometry group of S5 is generated by the Killing vectors MIJ = xI∂J−xJ∂I ,

where we realize S5 as a unit sphere x2
1 + . . .+x2

6 = 1 in R
6. If we choose the U(1)3 Cartan

subalgebra generators as

K(1) = M12 , K(2) = M34 , K(3) = M56 , (4.1)

7As was noted above, those two projections corresponding to (16) and (20) are related by the projection

(21) on AdS5 × X5.

– 8 –
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we find that for a Killing vector K = η1K1 + η2K2 + η3K3,

Ω = ||K||2 = η2
1(x

2
1 + x2

2) + η2
2(x

2
3 + x2

4) + η2
3(x

2
5 + x2

6) . (4.2)

The Killing spinors on S5 transform in 4 ⊕ 4̄ of SO(6). Their charges with respect to the

U(1)3 above are

4 −→ (+1,+1,+1) ⊕ (+1,−1,−1) ⊕ (−1,+1,−1) ⊕ (−1,−1,+1) . (4.3)

Hence the Killing spinors invariant under K are determined by solutions to the equation

η1 ± η2 ± η3 = 0 . (4.4)

For values of ηi satisfying (4.4), the non-relativistic solution preserves two real supersym-

metries. If in addition to (4.4) we impose that at least one of the ηi vanishes, the number

of real supercharges is enhanced to four. One can verify explicitly that all sixteen super-

conformal Killing spinors of AdS5 ×S5 are broken by the null Melvin twist so that one can

preserve only a subset of the Poincaré Killing spinors. Of course when all ηi vanish we get

back to the original AdS5 × S5 background, which preserves sixteen superconformal and

sixteen Poincaré supersymmetries.

It is clear that Ω is strictly positive when none of the ηi’s vanish. Setting one ηi to

zero, say η3 = 0, the Killing vector K vanishes on S1 given by x1 = x2 = x3 = x4 = 0 and

x2
5 + x2

6 = 1. Similarly, when two ηi vanish, there is an S3 on which K vanishes. As we

discussed in section 2, even though there could be a locus on which Ω vanishes, the twisted

background is still non-distinguishing and thus non-relativistic.

The special case η1 = η2 = η3 = η corresponds to the null Melvin twist along the Hopf

fiber of S5 and has been studied in [9–11]. In this case the Killing vector K has constant

norm and it is clear from (4.4) that the twisted solution breaks supersymmetry completely.

This has been also shown explicitly in [10].

4.2 T 1,1

In this section we describe explicitly the null Melvin twists for the AdS5×T 1,1 solution [37].

Recall that T 1,1 is the coset space SU(2)×SU(2)/U(1) with a unique homogenous Einstein

metric. There is a Killing spinor on T 1,1, with two real components, which gives rise to the

N = 1 unbroken supersymmetry of the Romans solution. The isometries of the solution

arise from the obvious SU(2) × SU(2) action on the left and, in addition, from another

U(1) action from the right on the coset. The Killing spinor is necessarily invariant under

SU(2) × SU(2), and transforms nontrivially under the U(1), which is the R symmetry of

the N = 1 superalgebra.

It is convenient to realize T 1,1 explicitly as a locus in C
4 by introducing a complex

matrix [38]

W =
1√
2

(
z3 + iz4 z1 − iz2
z1 + iz2 −z3 + iz4

)
, (4.5)

subject to the constraints

TrW†W = 1 , detW = 0 . (4.6)
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In this parametrization, the two SU(2)’s, call them SU(2)1 and SU(2)2, act on W by left and

right multiplication, respectively, while the R-symmetry, U(1)R, corresponds to the phase

rotation, zi → eiφ3zi. As explained in [38], the constraints (4.5) can be solved explicitly

by introducing the Euler angles, (θ1, φ1, ψ1) and (θ2, φ2, ψ2) for SU(2)1 and SU(2)2, and

setting ψ1 = ψ2 = φ3/2 to pass onto the coset. In terms of those angles, the unique Einstein

metric on T 1,1 is [38]

ds2T 1,1 =
1

6
(dθ2

1 + sin2 θ1dφ
2
1 + dθ2

2 + sin2 θ2dφ
2
2) +

1

9
(dφ3 + cos θ1dφ1 + cos θ2dφ2)

2 . (4.7)

For the general null Melvin twist we choose Killing vectors K(1), K(2) and K(3) corresponding

to U(1)1 ⊂ SU(2)1, U(1)2 ⊂ SU(2)2 and U(1)R, normalized such that

K(1) =
∂

∂φ1
, K(2) =

∂

∂φ2
, K(3) =

∂

∂φ3
. (4.8)

One can perform the null Melvin twist along φi and the Killing vector defining the non-

relativistic solution is

K =

3∑

i=1

ηi
∂

∂φi
. (4.9)

The function Ω is

Ω = η2
1

(
sin2 θ1

6
+

cos2 θ1
9

)
+ η2

2

(
sin2 θ2

6
+

cos2 θ2
9

)
+
η2
3

9

+ 2η1η2
cos θ1 cos θ2

9
+ 2η1η3

cos θ1
9

+ 2η2η3
cos θ2

9
. (4.10)

The matrix M is given by

M =
η1

2

(
sin θ1√

6

(
Γ58 + Γ610

)
− cos θ1

3
(2Γ68 − Γ79 − Γ510)

)
(4.11)

+
η2

2

(
sin θ2√

6

(
Γ59 + Γ710

)
− cos θ2

3
(2Γ79 − Γ68 − Γ510)

)
+
η3

6
(Γ68 + Γ79 + Γ510) .

One can show that the Killing spinor for this solution is

ǫ = e−
i
2
φ3 ǫ̃0 , (4.12)

where ǫ̃0 is a constant spinor satisfying the chirality condition (3.1) and four

additional projectors

(1 + Γ14)ǫ̃0 = (1 + iΓ23)ǫ̃0 = (1 + iΓ68)ǫ̃0 = (1 + iΓ79)ǫ̃0 = 0 . (4.13)

The condition M ǫ∗ = 0 is satisfied by (4.12) if η3 = 0.

Thus we find that the generalized null Melvin twist of AdS5×T 1,1 with the parameters

(η1, η2, 0) for non-zero (η1, η2) leads to a type IIB solution of the form Sch5 × T 1,1 with

H(3) and F(5) flux, which preserves two real supercharges. For η3 6= 0, we still have a

Schrödinger invariant type IIB solution, but the supersymmetry is completely broken.
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4.3 Y p,q and Lp,q,r

There are two infinite families of five-dimensional Sasaki-Einstein manifolds with explicitly

known metrics. The manifolds in the Y p,q family, found in [32], are specified by two

integers (p, q) determined by some regularity conditions.8 The solutions have SU(2) ×
U(1) × U(1)R symmetry. The Lp,q,r solutions are specified by a set of integers (p, q, r)

and have even smaller isometry group, U(1)2 × U(1)R [33]. The U(1)R isometry is special

and the Killing vector9 corresponding to it has a constant norm. Such a Killing vector

exists on every Sasaki-Einstein manifold, X5, and it can be determined by the Kähler form

on the corresponding Calabi-Yau cone over X5 [39]. The Killing spinor on X5 has two

real components and is charged under U(1)R so the results of section 3 imply that the

null Melvin twist along U(1)R will break supersymmetry completely. However, for both

the Y p,q and the Lp,q,r families we have two additional U(1) isometries along which we

can apply the twist with arbitrary real parameters (η1, η2). The resulting non-relativistic

solutions will be Schrödinger invariant and will preserve two real supercharges that are a

subset of the Poincaré supersymmetries of AdS5 × X5. The superconformal charges are

completely broken by the twist. Since the metrics on both Y p,q and Lp,q,r are explicitly

known, one can in principle construct explicit Killing spinors on them.

5 New solutions from vector harmonics

In this section we introduce a new class of solutions with Galilean symmetry, general

dynamical exponents and nontrivial three-form flux that are generated by vector harmonics

on X5. The starting point of our construction is an Ansatz that is a natural generalization

of the twisted solutions in sections 2 and 3 and the solutions with general dynamical

exponents, but without H(3) flux, constructed recently by Hartnoll and Yoshida [15] using

scalar harmonics on X5.

In the notation of section 2, the metric in [15] is of the form

ds2 = − Ω

z2n1
du2 +

1

z2
(−2 dudv + dx2

1 + dx2
2 + dz2) + ds2X5

, (5.1)

where Ω is a function on an internal Einstein manifold, X5, and n1 is a real positive

constant. The five form flux remains the same, F(5) = (1 + ⋆) volX5
. We complete the

Ansatz by introducing a three form flux with the potential

B(2) =
1

zn2
A ∧ du , H(3) = dB(2) , (5.2)

where A is an arbitrary one-form on X5 and n2 is a real constant.

The type IIB field equations [35] for this set of fields read

RMN =
1

6
FMPQRSFN

PQRS +
1

4
HMPQHN

PQ , (5.3)

8For our purposes we will not distinguish between regular and quasi-regular Sasaki-Einstein mani-

folds [32].
9Also called the Reeb vector.
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and, taking into account the form of the H(3) flux with nonzero components only along

mixed directions,

∇MHMNP = 0 . (5.4)

The only nonvanishing component of the Einstein equations (5.3) is along the uu-

direction where it reduces to

1

z2n1

(
1

2
∇2

X5
Ω + 2 (n2

1 + 1)Ω

)
− 4

z2n1
Ω =

1

z2n2

(
1

4
FαβFαβ +

n2
2

2
AαAα

)
. (5.5)

The terms in the bracket on the left hand side arise from the Ricci tensor. The second term

comes from the energy momentum tensor of the five-form flux, where the Ω dependence

is introduced by the vielbein eu
M , see (3.2). Finally, the right hand side arises from the

energy momentum tensor of the three-form flux, where F = dA.

The Maxwell equations (5.4) reduce to two equations. The component of (5.4) along

du ∧ dz gives

n2∇αAα = 0 . (5.6)

The remaining components yield the covariant massive Proca equation

∇αFαβ + (n2
2 + 2n2)Aβ = 0 . (5.7)

Expressing components of F in a covariant form,

Fαβ = ∇αAβ −∇βAα , (5.8)

and using the transversality condition (5.6), and Rαβ = 4gαβ , the latter equation can be

rewritten as10

(∇2
X5

− 4)Aα + (n2
2 + 2n2)Aα = 0 , (5.9)

which is the covariant Laplace equation for vector fields on X5.

Let us first discuss the solutions of (5.5) and (5.9) in the known cases.

• Aα = 0

We can solve Maxwell equation (5.9) by setting Aα = 0. In this case one is left with

a Laplace equation

∇2
X5

Ω + 4(n2 − 1)Ω = 0 , (5.10)

on the scalar harmonics on the Einstein manifold, X5, where we set n = n1. This case

has been discussed in detail in [15]. Here we only note that the discrete eigenvalues

of the Laplacian determine the discrete set of dynamical exponents n. The specific

values depend of course on the choice of X5.

When Aα does not vanish, the two exponents must be equal, n1 = n2 = n. Indeed,

since both terms on the right hand side in (5.5) are manifestly positive, the powers of z on

both sides of the equation must be the same.

10The operator (∇2
X5

− 4) is, in our normalization, the Lichnerowicz operator on vector fields on the

Einstein manifold X5.

– 12 –



J
H
E
P
0
7
(
2
0
0
9
)
1
0
7

• Aα = Kα is a Killing vector

In this case we can use the standard fact that on an Einstein manifold Killing vectors

are eigenfunctions of the Laplacian. Since we choose normalizations such that the

internal metric is of unit radius, we have,11

∇2
X5

Kα = − 4Kα . (5.11)

This solves (5.9) for n = 2. For this value of n, all terms without derivatives in (5.5)

cancel if we take Ω = KαKα. Then the derivative terms combine into

Kα∇2
X5

Kα +
1

2
(∇αKβ + ∇βKα)∇αKβ + 4KαKα = 0 , (5.12)

which obviously reduces to (5.11). This verifies explicitly that the backgrounds ob-

tained by the null Melvin twist along a Killing vector solve the type IIB equations of

motion.

In the general case, we have a coupled system of Laplace equations for the vector field,

Aα, and the function, Ω, on X5,

(∇2
X5

− 4)Aα = − n(n+ 2)Aα , (5.13)

∇2
X5

Ω + 4(n2 − 1)Ω = T (A) , (5.14)

where

T (A) =
1

2
FαβFαβ + n2 AαAα , (5.15)

is a scalar function on X5.

It is clear that, at least in principle, the system (5.13)–(5.15) can be solved system-

atically using harmonic analysis on X5. In the first step one determines the spectrum of

the operator (∇2
X5

− 4) on vector fields, which in turn determines the values of allowed

exponents n in (5.13). For a given eigenvalue of the vector Laplacian there is a degeneracy

in the spectrum of vector harmonics. This degeneracy depends on X5 and will lead to a

family of solutions for a fixed eigenvalue. Next, for a given n, one solves (5.13) by setting

Aα to be one of the vector harmonics for the corresponding eigenvalue. The scalar function

T (A) becomes then a source for the inhomogeneous massive Laplace equation (5.14) for the

function Ω, which may be solved by expanding T (A) into scalar spherical harmonics. We

will illustrate this procedure below by explicitly working out some solutions for X5 = S5

and by mapping out the relation between vector eigenvalues of the Laplacian on T 1,1 and

dynamical exponents.

It is worth emphasizing that, for a given vector harmonic Aα, the scalar function

Ω in (5.14) may not be unique. This happens when −4(n2 − 1), as determined by the

eigenvalue of the vector harmonic, Aα, is an eigenvalue of the scalar Laplacian. Then one

can add to Ω a solution Ω0 of the homogenous equation

∇2
X5

Ω0 + 4(n2 − 1)Ω0 = 0 . (5.16)

11See, (A.17) in the appendix.
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In the next subsection we will see an example of such non-uniqueness in the case

when X5 = S5.

A potential problem with a general solution (Aα,Ω) of (5.13)–(5.15) is that there will

be regions in X5 where the function Ω becomes negative. This will change the causal and

asymptotic structure of the ten-dimensional solution and may lead to instabilities [15].

Clearly, it would be interesting to understand properties of such solutions in more detail

and, in particular, to analyze their role, if any, in non-relativistic holography.

Finally, let us note that some of the solutions with n 6= 2 and Sasaki-Einstein manifold

X5 may preserve some supersymmetry. As we discussed in section 3, if the function Ω is

non-zero, the superconformal symmetries are broken, but some of the Killing spinors on X5

may be preserved. In the special case when A = 0 and X5 is a Sasaki-Einstein manifold,

one can use the supersymmetry variations in section 3 to show12 that the ten-dimensional

solutions preserve two supercharges. For X5 = S5, the number of supercharges increases to

eight. We have not performed a general analysis of the Killing spinor equations for n 6= 2

and A 6= 0, but it would be interesting if some of them turned out to be supersymmetric.

5.1 Vector harmonics on S5

The scalar and vector harmonics on spheres were extensively discussed in the literature in

the context of the Kaluza-Klein reduction of supergravities.13 The few basic facts that we

need here are derived in [40] and [41], where also earlier references can be found.

All scalar and vector harmonics on S5 can be constructed from the basic scalar har-

monic Y A and the basic vector harmonic Y A
α that transform in the vector representation

of SO(6) with components labeled by the index A = 1, . . . , 6. They satisfy the following

algebraic constraints

5∑

α=1

Y A
α Y

B
α = − Y AY B + δAB ,

6∑

A=1

Y AY A = 1 , (5.17)

and form a closed system under covariant differentiation

∇αY
A = Y A

α , ∇αY
A
β = − δαβY

A . (5.18)

All scalar harmonics are labeled by the totally symmetric traceless representations of SO(6)

and are given by

Y A1...Ap = Y (A1Y A2 . . . Y Ap) , p = 0, 1, . . . . (5.19)

Similarly, all transverse vector harmonics are of the form

Y
A1...Ak+1
α = Y [A1

α Y (A2] . . . Y Ak+1) , k = 1, 2, . . . , (5.20)

where the indices are symmetrized according to the SO(6) hook Young tableaux with k

boxes in the first row and one in the second row. There are also longitudinal vector

12This has also been shown in [15].
13For a recent comprehensive review in the present context the reader may consult [40]. We thank

Peter van Nieuwenhuizen for making this article available to us before publication.
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harmonics that are obtained by differentiating the scalar harmonics. We will not need

them here since Aα is a transverse vector harmonic (5.6).

Identities (5.18) turn all covariant differential operators acting on harmonics into al-

gebraic operations, while the constraints (5.17) can be used to reduce products of basic

harmonics into irreducible components. In particular, following those steps, one obtains

the familiar result for the eigenvalues of the Laplacian used in [42]

∇2Y A1...Ap = − p(p+ 4)Y A1...Ap , p = 0, 1, . . . , (5.21)

(∇2 − 4)Y
A1...Ak+1
α = − (k + 1)(k + 3)Y

A1...Ak+1
α , k = 1, 2, . . . . (5.22)

Comparing with (5.13) we have n = k+1 and if we define p = 2(n−1) it is clear from (5.16)

that we can add a homogeneous solution to Ω.14

The problem of solving (5.13)–(5.15) is now reduced to a finite dimensional linear

algebra. Suppose that we start by choosing Aα as one of the vector harmonics of order k,

which is a polynomial of order k+ 1 in the basic harmonics. Since the differentiation does

not increase that order, we conclude that T (A) is a polynomial of order 2k + 2 or less in

the basic scalar harmonics. This shows that Ω can be written as a finite sum

Ω =
∑

cA1...A2k+2
Y (A1Y A2 . . . Y A2k+2) , (5.23)

where the constant coefficients cA1...A2k+2
are then determined from the scalar equation.

Let us illustrate this using the already familiar case when Aα is a SO(6) Killing vector.

The latter are given by the transverse vector harmonics with k = 1, which corresponds to

n = 2 in (5.13). First consider

Aα = Y AB
α = Y A

α Y
B − Y B

α Y A , (5.24)

for some fixed A and B. Using (5.17) and (5.18) we obtain

AαAα = (Y A)2 + (Y B)2 (5.25)

= Y AA + Y BB +
1

3
, (5.26)

where the constant in the second line arises from subtracting traces in the reduction to

SO(6) irreducible components. Similarly,

Fαβ = − 2
(
Y A

α Y
B
β − Y A

β Y
B
α

)
, (5.27)

and

FαβFαβ = 8
[
1 − (Y A)2 − (Y B)2

]
. (5.28)

Hence

T (A) = 4
[
1 − (Y A)2 − (Y B)2

]
+ 4

[
(Y A)2 + (Y B)2

]
= 4 . (5.29)

14The freedom to add homogeneous solutions to Ω for any value of n is specific to S5 and will not be

present for a general Einstein manifold.
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More generally, we take a linear combination of such harmonics,

Aα =
1

2

∑

A,B

ηAB Y
AB
α =

∑

A,B

ηAB Y
A
α Y

B , (5.30)

where ηAB = −ηBA. Then

AαAα =
∑

A,B,C

ηACηBCY
AB +

1

3
η2 , T (A) = 4η2 , (5.31)

where

η2 =
∑

A<B

η2
AB and Y AB = Y AY B − 1

6
δAB . (5.32)

Substituting this in the scalar equation (5.14) with n = 2, we get

∇2 Ω + 12Ω = 4η2 . (5.33)

The generic solution to this equation, which we discussed above, is Ω = AαAα. However,

there is another obvious solution, which is simply the constant function

Ω =
1

3
η2 . (5.34)

From (5.31), the difference between the two solutions is a sum of k = 2 scalar harmonics,

Y A1A2 , which satisfy the homogenous equation (5.16) (cf. (5.21)).

To summarize, we have shown that there is a 15 + 20 parameter family15 of solutions

on S5

Aα = Kα , Ω = ||K||2 + Y , (5.35)

where Kα is a Killing vector and Y is a solution to (5.14) with k = 2.

The solutions with Ω = KαKα and Y = 0 arise naturally from the null Melvin twist

construction. If one takes Kα to be a Killing vector along the Hopf fiber, its length is

constant and the solution reduces to (72) with constant Ω. However, since all Killing

vectors on S5 are equivalent under the SO(6) symmetry, the solution with constant Ω

should exist for any choice of Kα, which indeed is the case.

As a final example we consider a solution with a higher vector harmonic. Let us take

the harmonic [40]

Y ABC
α = 2Y A

α Y
BY C − Y B

α Y AY C − Y C
α Y AY B , (5.36)

with distinct A, B and C. It has k = 2, which gives the dynamical exponent n = 3.

Similarly as above, we find

T (A) = 9
[
(Y B)2 + (Y C)2

]
. (5.37)

15There is a 15 parameter degeneracy for the vector harmonic with k = 1 and a 20 parameter degeneracy

for the scalar harmonic with p = 2. It is possible that some of these solutions are equivalent.
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However, unlike before, the mass term in (5.16) is equal to 32, which does not correspond

to any of the eigenvalues of the scalar Laplacian in (5.21). Hence the solution

Ω =
9

20

[
(Y B)2 + (Y C)2 − 1

8

]
, (5.38)

is unique, up to the degeneracy in the choice of vector harmonic and addition of a ho-

mogeneous solution discussed above. This example illustrates explicitly the problem we

mentioned earlier that, for higher order harmonics, Ω may be negative in some region of X5.

We conclude the discussion of S5 with the observation that the eigenvalues for the

transverse vector harmonics in (5.22) determine the dynamical exponents of our solutions

to take values

n = k + 1 . (5.39)

Hence, we have here examples of scale-invariant, non-relativistic type IIB solutions with a

B-field and integer dynamical exponents, n ≥ 2.

5.2 Vector harmonics on T 1,1

We will not attempt to find explicit solutions with different dynamical exponents generated

by the vector harmonics on T 1,1. Instead we will map out the relation between the spec-

troscopy of vector eigenfunctions of the Laplacian on T 1,1 and the dynamical exponents of

the field theories dual to the new gravity solutions.

The eigenfunctions of the vector Laplacian are labeled by weights of the SU(2) ×
SU(2) × U(1) isometry group of T 1,1 [43, 44],

∇2Al1,l2,l3
α = λ(l1, l2, l3)Al1,l2,l3

α . (5.40)

There are four series of eigenvalues

λ1,2 = 3 + h(l1, l2, l3 ± 2) , (5.41)

λ3,4 = h+ 4 ± 2
√
h+ 4 , (5.42)

where h(l1, l2, l3) are the scalar eigenvalues of the Laplacian on T 1,1

h(l1, l2, l3) = 6

(
l1(l1 + 1) + l2(l2 + 1) − l23

8

)
. (5.43)

Here l1, l2 could be integers or half-integers and l3 is an integer. The values of the dynamical

exponents of the gravitational backgrounds are determined by the solutions to any of the

four algebraic equations

n(n+ 2) = 4 − λi(l1, l2, l3) , i = 1, 2, 3, 4 . (5.44)

It follows that for T 1,1 as the internal manifold, the dynamical exponents of the non-

relativistic solutions are not arbitrary integers, as is the case for S5. In fact, for generic

values of (l1, l2, l3) the dynamical exponent, n, is irrational.
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6 Conclusions

We have found a large class of supersymmetric IIB solutions with non-vanishing B-field

which are invariant under the Schrödinger symmetry. The solutions are obtained by the

null Melvin twist from supersymmetric type IIB solutions of the form AdS5×X5. The field

theories dual to these solutions form a very special class of non-relativistic field theories.

They can be obtained from the relativistic N = 1 superconformal Yang-Mills theories dual

to AdS5 × X5 by performing a discrete light-cone quantization accompanied by a twist.

The twist amounts to modifying all products of chiral superfields in the Lagrangian of

the relativistic theory by phases proportional to the charges of the fields under the U(1)

global symmetries used in the null Melvin twist. This class of field theories was discussed

in [45–47], see also [11].

We also found a quite general class of type IIB solutions with dynamical exponents

different from two and non-vanishing B-field. As discussed in section 5, the B-field is

determined by a vector harmonic on an Einstein manifold, X5. The metric is obtained

by solving an inhomogeneous scalar Laplace equation on X5. The solutions are invariant

under the Galilean group and dilatations, but are not invariant under special conformal

transformations, and thus break the full Schrödinger symmetry. The dual field theories

should be scale invariant and invariant under Galilean transformations. Since we did not

generate the gravity solutions by some twist of known relativistic solutions with clear D-

brane interpretation, the detailed structure of the dual non-relativistic field theories is

not clear at present. It would be very interesting to reduce the solutions of section 5 to

five dimensions and to see whether they can be obtained as solutions to five-dimensional

gravity coupled to some massive fields [7, 8, 10]. More generally, it is important to under-

stand compactifications and consistent truncations of type IIB supergravity with massive

fields [10, 48].

There are several directions in which our analysis could be extended. It is interesting

to find eleven-dimensional analogs of our solutions. Some supersymmetric non-relativistic

solutions of the eleven-dimensional supergravity are known, [19, 21]. Perhaps it is possible

to find more general classes of such solutions using the results of this paper as a guide. A

natural way to proceed is to start with a Freund-Rubin solution of the form AdS4 × X7

where X7 is a seven-dimensional Sasaki-Einstein manifold with U(1)4 isometry.16 Then one

can reduce the solution along the U(1) R-symmetry to get a solution of IIA supergravity

with U(1)3 symmetry. The generalized null Melvin twist applied to this solution would

generate a non-relativistic type IIA solution with a Sch4 non-compact space-time. This

solution could be uplifted to a solution of eleven-dimensional supergravity. It is natural

to expect that for the null Melvin twist performed along U(1) isometries that leave the

X7 Killing spinor invariant, the twisted eleven-dimensional background will preserve some

supersymmetry. It should also be possible to use this eleven-dimensional solution as a

guide for constructing more general solutions along the lines of section 5.

There are supersymmetric extensions of the Schrödinger algebra with various amounts

of supersymmetry [31]. It is interesting to explore the connection between these superalge-

16There exists an infinite family of such manifolds with explicitly known metrics [33, 49].
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bras and the supersymmetric Schrödinger invariant IIB solutions found here and also those

in [15, 19]. It is natural to explore whether any of the supersymmetric type IIB solutions

presented here could be realized as non-relativistic supercosets along the lines of [50].

We would like to note that it is straightforward to find finite temperature counterparts

of all solutions discussed in section 2 and section 4. One should start with a AdS5 ×X5

black hole solution and apply the generalized null Melvin twist. This was done in [22] for

the AdS5 × S5 black hole. It would be also interesting to construct the finite temperature

versions of the solutions with general dynamical exponents found in section 5 and explore

their thermodynamics.

Finally it is tempting to speculate that there might be supersymmetric (and non-

supersymmetric) non-relativistic analogs of the familiar RG flow solutions of the type IIB

and eleven-dimensional supergravities. A modest attempt to construct such solutions was

made in [22], but there is certainly much more to explore.
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A Generalized null Melvin twist

The null Melvin twist [24, 25] (see, also [9, 11, 22]) is a solution generating technique which

can be used to construct explicitly new solutions of the type IIB supergravity starting from

a known solution with at least U(1) isometry. In this appendix we summarize the main

steps of the construction as applied recently in [22] to solutions with U(1)3 isometry. We

show that by examining explicit formulae for the twisted solutions in [22], one is naturally

led to rewrite the result of the null Melvin twist along any isometry given by a Killing

vector, K, in terms of intrinsic quantities without reference to any specific coordinates.

Consider a type IIB solution of the form AdS5 ×X5, where X5 is an Einstein manifold

with U(1)3 isometry. For definiteness, let us take

ds210 =
1

z2
(−dt2 + dy2 + dx2

1 + dx2
2 + dz2) + ds2X5

, (A.1)

F(5) = (1 + ⋆) volAdS5
, (A.2)

where we have normalized the AdS5 and X5 to be of unit radius. In all cases of interest,

the metric on the internal manifold X5 can be written, at least locally, in the form

ds2X5
= f1dθ

2
1 + f2dθ

2
2 +

3∑

i,j=1

fijdφidφj , (A.3)
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where all functions fi and fij depend only on θ1 and θ2. The angles φ1, φ2, φ3 parametrize

directions along the three U(1)’s.

The generalized null Melvin twist [22, 24, 25] consists of the following operations that

are straightforward to implement:

• a boost in the (t, y) plane with parameter γ0,

• a T-duality along y,

• a shift of all three U(1) isometries of X5 given by φi → φi + aiy,

• another T-duality along y,

• an inverse boost in the (t, y) plane with parameter −γ0,

• a limit ai → 0, γ0 → ∞ such that ηi ≡ ai cosh γ0 = ai sinh γ0 remain finite.

Introducing light-cone coordinates

u = t+ y , v =
1

2
(t− y) , (A.4)

the resulting spacetime is a product space Sch5 ×X5, with the metric

ds210 = − Ω

z4
du2 +

1

z2
(−2dudv + dx2

1 + dx2
2 + dz2) + ds2X5

, (A.5)

a nontrivial two-form potential

B(2) =
1

2z2
[∂η1

Ω dφ1 + ∂η2
Ω dφ2 + ∂η3

Ω dφ3] ∧ du , (A.6)

and the five-form flux

F(5) = (1 + ⋆)volSch5
, (A.7)

where Ω is explicitly given by

Ω(θ1, θ2) =
3∑

i,j=1

fij ηiηj . (A.8)

Note that since volAdS5
= volSch5

, the five-form flux is in fact invariant under the twist.

The entire twisted solution is completely determined by Ω in (A.8). In order that the

metric in (A.5) is well defined over the entire space, Sch5 × X5, this Ω must be a scalar

function on X5. This in turn implies that the twist parameters ηi’s should be viewed as

coordinates of a vector field on X5, rather than constants. Indeed, the solution (A.5)–(A.7)

can be easily recast into a form that makes this manifest.

The Killing vectors of the U(1)3 isometry for the internal metric (A.3) are linear

combinations of the three Killing vectors

K(i) =
∂

∂φi
, i = 1, 2, 3 . (A.9)
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We observe that in terms of the Killing vector

K =

3∑

i=1

ηi K(i) =

3∑

i=1

ηi
∂

∂φi
, (A.10)

we have simply

Ω = ||K||2 , (A.11)

where ||K|| is the norm of K. Furthermore,

B(2) =
1

z2
K ∧ du , (A.12)

where K is the one form dual to Killing vector, K, with respect to the internal metric.

Eqs. (A.11) and (A.12) show that the twisted solution is well defined over the entire

internal manifold. In particular, one can use them to write down the solution (A.5)–(A.8)

in terms of arbitrary coordinates (ξα) on X5,

ds2X5
= gαβ dξ

αdξβ , Rαβ = 4 gαβ , (A.13)

and

Ω = gαβ KαKβ , Kα = gαβ Kβ . (A.14)

Since the metric is block diagonal, (A.14) has the same form when written in terms of

ten-dimensional coordinates.

The explicit background fields in (A.5)–(A.8) were obtained by applying the null Melvin

twist along an arbitrary Killing vector. Therefore, by construction one is guaranteed to

get a solution of the type IIB supergravity. However, it is also illuminating to verify

this explicitly starting with an Ansatz for the fields as in (A.5)–(A.7), (A.11) and (A.12),

where X5 is an arbitrary Einstein manifold with a globally defined vector field K. Using

the formulae for the spin connection and the fluxes in section 3, we find that the Maxwell

and the Einstein equations reduce to two equations for K,

∇2
X5

Kα + 4Kα = 0 , (A.15)

and

Kα∇2
X5

Kα +
1

2
(∇αKβ + ∇βKα)∇αKβ + 4KαKα = 0 , (A.16)

respectively, where ∇2
X5

= ∇α∇α is the covariant Laplacian on X5. The two equations

imply that ∇(αKβ) = 0, as the second term in (A.16) is manifestly positive. Thus Kα must

be a Killing vector and (A.16) follows from (A.15). It is a standard fact that Killing vectors

are eigenfunctions of the Laplacian on an Einstein manifold so that the latter equation is

always satisfied. Indeed, we have

∇α(∇αKβ + ∇βKα) = ∇2
X5

Kβ +Rα
βKα (A.17)

= ∇2
X5

Kβ + 4Kβ ,

where we used that ∇αKα = 0. Note that the normalization of the mass term in (A.15)

corresponds to the unit radius of X5 in (A.13).
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